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Summary

Several mathematical theorems are derived which demonstrate the equivalence of

continuous volume distributions of doublicity, vorticity and source, and show
S furthermore that their influence may be expressed purely in terms of continuous

surface distributions of these quantities over the closed boundary of the
volume.

These general theorems may then be particularised to 'sheets' of singularities
distributed over non-closed surfaces; amongst a number of examples, the
special cases of the velocity fields induced by source, vortex and doublet
sheets are considered, which under certain circumstances are equivalent to each
other and reduce to simple line integrals.

These theorems are expected to have some application in aerodynamic problems
involving the interaction between irrotational incompressible flow regions and
regions of more general flow such as those arising in aerodynamic wakes and in

the jet-in-crossflow problem, and to be of assistance in the development of

improved surface singularity techniques. -.
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1. INTRODUCTION

It is well known that if the potential in a region obeys Laplace's equation
everywhere within that region, then that potential can be expressed entirely
in terms of surface integrals involving the value of the potential and its
normal derivative everywhere on the closed boundaries of that region. This
fact is exploited in practical aerodynamic calculation methods ('panel
methods') which allow the potential and the velocity everywhere on and
outside the surface of a configuration to be determined nominally exactly
by evaluating one or the other of these functions at the configuration
surface, such that the appropriate boundary conditions are satisfied.

However, in cases where the governing equations in the region of interest do
not reduce to Laplace's equation (such as flows which are compressible or
rotational) the expression for the velocity at any point in such a region
involves not only surface integrals but also volume integrals which in
general extend over the entire non-Laplacian volume. Consequently schemes
treating such cases involve a significantly greater amount of computation and
currently are restricted to geometries much simpler than those which 'panel
methods' are able to handle.

Problems in which it is required to compute the flow inside regions where
volume sources or vorticity may be considered to be present (e.g. compressible
or rotational flow) will not be considered here. In many problems of interest,
however, such regions may be embedded in a flow which is otherwise source- and
vorticity-free; examples include the flow outside a thick wake (and its
'rolled up' core of rotational fluid) behind a lifting wing, or the flow out-
side a jet issuing at some angle into an otherwise irrotational stream.

In such cases it is often required (sometimes as part of an iterative scheme)
to compute the cffect produced in the outer (Laplacian) region by the sources
and/or vorticity used to model these embedded regions. It is shown herein
that this external effect may instead be computed from surface distributions
over the boundary of these embedded regions, and that in certain special
cases, when the embedded region may be modelled as an infinitesimally thin
volume (i.e. a sheet line distributions may be used. The theorems allow the
singularities (vortices, sources, doublets) to be chosen which are computationally
the most convenient for the problem in hand.
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2. BASIC CONVENTIONS AND INFLUENCE EXPRESSIONS

In the following, a general vector I denotes the quantity (A3 + A A, Ait)
where t, 3, I are the unit vectors of the cartesian axes x, y, z. In

particular the vector F denotes the vector drawn from a point Q to a point P.

i.e. + (V, - )S + (F- ZeA

or = (x, -x 061 + ( -p t0 + Oep- 2.

The operators curl.(or Vx), dive (or V.-) and grade (or Ve ) denote the usual
vector differential operators, the differentations being defined with respect
to the coordinates of the point Q. The operator grade (or V,, ) implies
differentiation with respect to the coordinates of P.

It can easily be seen in particular that:

(W rad " ( 7) = -yia A. ( -)= 3

Usewill be made of the standard vector identities:

(2) iv (si) A- .yrac S -t- s &V.,g

(2a) ct-rt (s )E (ra. s A + s cut

and

(3)(g ),5 -(.) -(.)

where s denotes a distributed scalar function, A a distributed vector

function and E, C and D are general vectors; Gauss' divergence theorem will
also be used:

(4) fffd~Q dJ fA4%
where A is a continuous vector function defined at every point Q within the
arbitrze7 volume fl and n denotes the outward normal to the surface S bounding ft.

Consider the effects induced at a point P by an elemental singularity (source,

doublet or elemental vortex filament) located at a point Q; this may be an
element of a continuous line, surface or volume distribution.

The elemental potential dps and velocity dvl induced at P by an elemental
source of strength do- located at Q are given by:

(5) -z~ (dcr andT r d

The elemental potential dod and velocity Sd induced at P by an elemental

doublet dA located at Q (with da -dA , where a is a unit vector along the
doublet axis, the positive direction of the axis being from the 'negative'

to the 'positive' end of the doublet) are given by:

N~
(6 ) a na

--.-



The elemental velocity dVv induced at P by an elemental vortex filament d
located at Q (the positive direction of the vector dF being associated with a
clockwise rotation about the filament) is given by:- _ .jrxf

It may be noted by comparing (5) and (7) that the velocity field induced by a
unidirectional vorticity distribution (line, surface or volume) may be derived
from that induced by a source distribution with the same spatial density
variation, simply by computing the vector cross-product of the source-induced
velocity with the unit vector defining the vorticity direction. The effect
of vorticity distributions of variable direction may simply be constructed by
compounding three different unidirectional vorticity distributions (even
though each of these in isolation may be physically impossible). This
subject is discussed in depth in ref. 1.
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3. INTEGRATION OF ELEMENTARY CONTRIBUTIONS

3.1 Distribution of Vorticity on a Closed Surface

3.1.1 VeLocity Induced at an ExternaZ Point

Fig. 1 (a) Fig. 1 (b)

Consider the velocity VP induced at a point P due to a continuous surface

vorticity distribution of variable density T lying everywhere on the closed
surface S of an arbitrary volume 1 (see Fig. 1 (a)); P lies outside this
volume. Since i' at any point of the surface must be perpendicular to the
local surface unit outward normal n, we can write Ys = A x A , where/i is some
variable vector field function defined at the surface S.

Using (7) the velocity induced at P is given by:

(8) 4 T I V = fX ;d S
S

where 5 is an abbreviation for the variable vector F/r3 (i.e. - gradp(--).

Now, using (3):

Inserting this in (8) and considering only the component in the direction x:

1 ff - ds

S S

which becomes, using (4):

(9) 47TV .~ f ff Atv [~, )d f1 fff JjVjg]

the integration extending over all points Q within the volume 12.

Now using (2):

= , .t, Q(.) (,,a .. ,.t-o

and

J iv~ 1 Fad 4 + ,,d.v, 1
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since AV,[ = (-) =0 for all r 0 0, i.e. when P lies outside A.

Substituting these expressions in (9):

(10) 4l .C = fVf[t.rac A.F) -r.(a0a . .

Expanding the operator grade gives:

T) .- u2 bx +~AL~ lu +/t,,6)

+ -+ + ml

Now A is invariant with respect to the position of the point P, so that using
(1) we obtain:

IA. - - - = - - b , etc.

so that (11) becomes:

=.' - -- (A ~ L7. b + b41

Also: b. grad,tA = + y ± + x

Inserting these last two equations into (10) and rearranging gives:

4+ 7,,~~a - t =z ? D

which by inspection is equivalent to:

(12) 4Tr Vp. =t fff d- P 4Et.L [~T' .AJfL.

If the process following equation (8) is repeated for the components in the

y and z directions, it follows that we finally obtain from (12):

(13) 4MVF, = fff r- ,,(,i.;)dJ - fff- ,,.d'/idf,
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By comparing with equations (6) and (7) and remembering that = F/r 3 itcan be seen that:

2 fff-rcpT~cJ

is the velocity induced at P by a volume doublet distribution throughout the
volume J1, of variable density/Z , (see Fig. 1 (b)), and that

is the velocity induced at P by a volume vorticity distribution of
variable density T, = curl J . Since the equations are derived for an
arbitrary volume doublet distribution /Z and an arbitrary external point P, it
follows that these relationships between the equivalent doublet and vorticity
densities apply in a local sense for any point Q within l or on S, and not
only in an integral sense.

The volume vorticity distribution Y, is thus everywhere solenoidal since
dive Y = dive cY..L[Y = 0 (i.e. vorticity is neither created nor destroyed
at any point within -l). It can furthermore easily be shown by constructing
a local cartesian system ( ,Z ,Y) at any point on S that the vorticity flux
i'i.curlZ d5d.,Y entering an elemental area dS = d d- from the interior of J1 is
exactly equal to the flux of the surface vorticity leaving the edges of dS
It follows that the surface vorticityE is physically meaningful in isolation
only in the special case curl/7 = 0; unless this is the case, the surface
vorticity cannot be replaced by surface doublicity in the manner discussed later.

By equating the right-hand sides of equations (8) and (13) and rearranging the
terms, we obtain the following theorem:

Theorem 1 "The velocity induced by a volume distribution of doublets

q arbitrary volume density ,, at a point lying outside that volume,

is identical to the velocity induced at that point by a volume
distribution of vorticity of volume density F, - cfa throughout that
same volume, together with a surface vorticity distribution i on the
surface of that volume, whose surface density and direction are given
by x --=A where ,i denotes the local value of) infinitesimally
inside that surface, and i denotes the local outward unit normal to
that surface".

It may be noted that, if the volume doublet distribution is known, the
velocity induced at an external point may be evaluated explicitly either
directly in terms of the volume doublet distribution or in terms of the
equivalent, volume-plus-surface vorticity distribution. In the special
case where the volume vorticity has a density of zero (i.e. curlA = 0),
this velocity may be obtained purely from a surface integral. This statement
requires modifying when the point at which the velocity is required lies
inside the volume Si.



3.1.2 Velocity Induced at an Invernal Point

In the case where the point P lies within the volume/I the value of 7 approaches
infinity for points Q in the immediate vicinity of P; at P, V.4(4 ) is no
longer defined, and the steps leading from equation (9) to equation (10) which
assume that V4(Z) = 0, are no longer valid. This problem may be
circumvented by constructing a small sphere of radius F_ about P (its surface
being denoted by Z and its volume by -r) and excluding this sphere from the
region of integration; the point P may then be considered to lie outside
the volume (fl-ir), and the above equations are then still applicable for this
volume and the associated surface (S +2.). The equations relating to the complete
volume I. may then be obtained by augmenting the right-hand sides of equations
(10) and (12) by the expression

which was zero for the case where P lay outside l. Now as -,O the function
becomes progressively more uniform within v and in the limit the above expression
may be written -/4 Sjf A L v. V . By Gauss' theorem (equation (4)) this
then becomes -# x . -e' d I with 4'the outward unit normal to the
surface . Since 'Fis defined positive from Q to P (i.e. pointing towards
the centre of this sphere), the quantity bAn is equal to -1/e for all points
Q on E so that the above surface integral reduces to 47ET/U . Consequently
equation (13) becomes for a point P inside 1.:

(14) 41rY =r

It can thus be seen that for the case where the point P lies inside the
volume Al , the following theorem is obtained:

Theorem la "The velocity induced by a volume distribution of doublets
of arbitrary volume density ,, at a point which lies within that volume,
is identical to the velocity induced at that point by a volume
distribution of vorticity (of volume density Y, = cur l,, throughout that
volume), together with a surface vorticity distribution T. on the
surface of that volume, (whose surface density and direction are given
b& - , where U. denotes the value of / infinitesimally inside
that surface, and 4 denotes the outward unit normal to that surface),
plus a term which is locally equal to the vector value-,".

It may be noted that if the volume distribution )a is known, then the
velocity may be evaluated either directly in terms of the volume doublet
distribution or in terms of the equivalent volume-plus-surface vorticity
distribution, augmented by the local term -U . In the special case where
the volume vorticity has a density of zero (i.e. curl/A = 0), this
velocity may be obtained purely from a surface integral plus the local term-

3.2 Source Distribution on a Closed Surface

Referring again to Fig. la, consider the potential p induced at a point P
due to a continuous surface source distribution of variable density q on
the closed surface S. Suppose that the scalar function or is expressed
as &, - whereTi is again some vector field function defined at the
surface S.



Using (5) the potential induced at P is given by:

(15) Tr~~ ff A.
S

which, using (4) may be expressed:

47Th = fff JV. (4-_)d.
JL

and which, using (2), further reduces to:

4~= -ffi .)1 - fffv

or, using (1), to:

(16) 4 5ff r adp( ).if - fff-LoI., dQ.
AA

By comparing with equations (6) and (5) it can be seen that

is the potential induced at P by a volume doublet distribution of variable
volume density,4 throughoutJl and that

is the potential induced at P by a volume source distribution of variable
volume density a,, = -Jvla throughout A.

It can be seen that none of the above steps precludes the case where P
lies inside Al , i.e. equation (16) is equally valid for points lying inside
or outside At

Once again, the equations are valid for an arbitrary volume doublet
distribution and for any point P; consequently the relationships between
the equivalent source and doublet distributions apply in a local sense for
any point Q in the respective distributions, and not only in an integral
sense.

The volume source distribution is everywhere irrotational since
curl,&, = curl,,dvt,? = 0 (i.e. vorticity is neither created nor destroyed
at any point within 12.). Furthermore it follows immediately from Gauss'
theorem (equatiun (4)) that the total volume integral of the source
density - div/Z is _equal and opposite to the total surface integral of the
source density /a.TL .

By applying the operator gradp to both sides of equations (15) and (16),
the corresponding equations for the velocity Vp are obtained. By equating
the right-hand sides of these equations and reairanging the terms, the
following theorem is obtained:

Theorem 2 "The potential and velocity induced at any point P by a
volume distribution of doublets of arbitrary volume
densitya are identical to those induced at the same
point by a volume dstribution of sources of volume
density o = - div, throughout that same volume, together
with a surface source distribution q = js.4i on the surface
of that volume, where ,,Z denotes the local value ofi1
infinitesimally inside that surface, and 4 denotes the local
outward unit normal to that surface".

-10-



Since Theorem 1 (and la) and Theorem 2 are stated for arbitrary volume
doublet distributions, it follows that the velocity field due to any
doublet distribution may be replaced by that due either to the source
distributions of Theorem 2 or to the vorticity distributions of Theorem 1
(plus the local term}2 for points lying inside the influencing volume).
By rearranging the various effects, the following theorem can be obtained:

Theorem 3 "The velocity field due to a combined volume distribution
of sources of density (o = divA ) and vorticity of
density ( f = curl,) throughout a volume ft is identical
to that due to a combined distribution, on the surface
of that volume, of surface sources of density ( os =,Z/e -
and surface vorticity of density ( ' ? -,i ), together

with a local velocity increment equal to the local value of/i
for points which lie inside the volume Al".

3.3 Normal Doublet Distribution on a Closed Surface

Referring again to Fig. la, consider the velocity induced at a point P due
to a continuous surface distribution of doublets, of density /L5 , normal to the

closed surface S.

Using (6) and (1) the potential induced at P is given by:

(17) 47t 0, f CIS

which by virtue of Gauss' theorem (4), becomes:

(18) 4TE~ -fvCILL. (4 J))dfL
.fL

where f is interpreted as a scalar function which varies continuously
throughout L, but which has the scalar value 1.s at the surface S.

Now using (2):

fffa. (;di=) ffcrata) + fff )

By an argument similar to that used in 3.1.2, the last term is equal to
zero for points P which lie outside 1I, and equal to the local value - 41T

for points within l.

Thus for points outside R2, (18) becomes:

(19) 4nr f ff (p t ( -1r)) . C. J2

whilst for points within A. it becomes:

(19a) /fff d S44).~rd )~ 2 + 4Tf p

By comparing with equation (6) it can be seen that the volume integral in
equations (19) and (19a) is equal to the potential induced at P by a
volume doublet distribution T4 , given byi, = gradf ; this doublet
distribution is irrotational since curlegradf = 0. We thus obtain the

following theorem:

-11-



Theorem 4 "The potential and velocity induced at any point by an
irrotational volume distribution of doublets of arbitrary
density /, = grad f (where f is an arbitrary scalar
function in that volume) is identical to that induced by a
surface distribution of normal doublets on the surface of
that volume, given by/ ,i= . A (where fdenotes the value of
4 infinitesimally inside S and A denotes the unit outward
normal to that surface), augmented when P lies inside that
volume, by the local values of -$ and of -grad -
respectively".

By comparing the above Theorem with Theorem la for the case where curliA is
zero (as above) the following Theorem is obtained:

Theorem 5 "The velocity induced at any point by a continuous surface
distribution of normal doublets/u,,a on any closed surface
is identical to that induced by a surface vort'city
distribution f, on that same surface given by ) =Crad2 u>
where n. denotes the local unit normal to the surface and
the operator grad, indicates that only surface derivatives
are required (the normal component of gradyg contributes
nothing to the vector product with 4PL

3.4 General Statement of Equivalent Distributions

By comparing Theorems 2, 4 and 5 in the special case where the volume
doublet distribution /4Z throughout the volume il is such that div.J- = 0 and
curlQ [v 0= , and is defined by /Zi= grad f, the following general theorem is
obtained:

Theorem 6 "The following distributions produce identical velocity fields:

i) The arbitrary doublet distribution j=grad f such that V 2f = 0
throughout 11 ;

(ii) The surface source distribution o, =P .grad f on the closed
surface S off2, grad f being evaluated infinitesimally inside S;

(iii) The surface normal doublet distribution A =rA on the closed surface
S of A, I being evaluated infinitesimally inside S; for points
lying insideJ2 the velocity due to this /2Z must be augmented by the
local value of - grady;

(iv) The surface vorticity distribution a = grad f × , gradf
being evaluated infinitesimally inside S; for points lying inside £2
the velocity due to this _?, must be augmented by the local value of
-grad ( ".

Note that the alternative surface distributions may lie on different surfaces
of the volume. For example volume doublicity parallel to the axis of a prism
may be replaced by surface source distributions on the end-faces normal to
that axis, or by surface vorticity distributions on the remaining surfaces.

-12.-



4. APPLICATION TO CERTAIN SIMPLE CASES

Some results will now be derived which are of relevance to surface singularity
methods.

h.1 Doublet Distribution on a non-closed Surface

Consider an arbitrary surface S with continuously varying tangent plane. S
has the perimeter L. Consider the volume A1 swept out by displacing every
point of S by a constant distance h in the direction of the normal to the
local tangent plane of S. It is assumed that h is less than the smallest radius
of concave curvature of S so that normals to S do not intersect within J.
The boundary of.l can then be defined by the displaced surface S' (which also
has continuously varying tangent plane), by the 'closed' edge E, and by the
original surface S.

Consider now the surface .passing through all points 04 which are contained
within this volume at a constant normal distance fh from S (0 < f < 1);
suppose that E is defined by the equation F(x,y,z) = 0 where (x,y,z) are
the cartesian coordinates of a point on this surface, and that E is defined
by G(x,y,z) = 0. At any point Q; the vector N = iact RF (x,y,z) defines a
vector which is locally normal to Z (and parallel to the unit vector &at the
point where N intersects S). In general N will not be a unit vector; its
magnitude will vary over V and indeed for points lying along the same line N'
but with different values of f.

Suppose no that the above volume L contains a doublet distribution which at
any point s defined by ,iT=nR where m is a scalar function which is constant
along any normal to the surface S but is otherwise variable throughout the
V 'me l . At some external point P which is sufficiently far removed fromh1,
this volume doublet distribution will produce approximately the same potential
and velocity as a surface doublet distribution of variable surface density YvdN K
on some 'mean' surface between S and S', where N is the mean magnitude of N
along the local normal to S, and n is the local unit normal to S.

Now, according to Theorem 1, this volume doublet distribution W, will produce
exactly the same velocity at any external point P as a volume vorticity
distribution of density = curlF,,) throughout il , together with a surface

Avorticity of density = l% on the boundaries S, S' and E, n being the
local outward unit normal for each of these surface. Since/T-- is defined to
be normal to S and S', the equivalent i on these surfaces is zero. The
equivalent volume vorticity distribution 7, can be written, using equation
(2a):

"W= (grade1i) X + Ifltcw-f-

since curl, N = curl, racL F (x,F = 0.

It may be noted that gradm will have no component in the direction of
since m is defined to be constant in that direction. Also, since h is
constant, we can write (grade m) = -(grad, mh.) and this vector will be
constant for all points which lie on a particular normal to S. Thus at an
external point sufficiently far removed from 1.., the volume vorticity
distribution will produce approximately the same velocity as a surface
vorticity distribution of variable surface density W = (grad2 mhN) x
on some 'mean' surface; the operator grad, excludes derivatives normal to

-13 -



this surface; N is again the mean magnitude of N along the local normal

to S, and A the local unit normal to S.

The surface vorticity distribution on the 'edge' surface E can be

written:

A

where nis the local normal to E and in, and N are the local values of M and N

at the surface E.

At an external point sufficiently far removed from A this vorticity
distribution on the edge surface E produces approximately the same velocity
as a line vortex distribution of variable line density f defined by F = ?nh N t
where t = ' x n is the unit vector along the perimeter of the 'mean' surface.

In the limit as h decreases to zero, whilst the function m is increased such
that the function mh 1 remains finite (A say), the 'mean' surface becomes
coincident with S and N becomes the vector grad F,(T, ,z) pertaining to S.

Consequently the above 'approximate' statements reduce to the following exact
statement:

"The velocity field induced by a distribution of normal doublets of surface
density !i , on any bounded surface S with continuously turning tangent
plane, is identical to that induced by a surface vorticity distribution

on that same surface, defined by Y = grad2 ,a s X (where 9 is the local
unit normal to S), together with a line vortex P along the perimeter L of S,
defined by P =/",e , where p4iis the magnitude of A at that perimeter,
and g is the unit vector along L such that the vector xa, points away
from S ".

This statement forms an extension to Theorem 5, which was derived for a closed
surface only.

Note that the above statement has been derived for any general surface S with
continuously turning tangent plane; however, it can be seen that it is also
valid for the case of surfaces containing lines at which the tangent plane is
discontinuous, provided that the magnitude of the doublet density is

continuous across such a line; similarly the perimeter L need not form a
line with continuously turning tangent.

In the special case of surface doublicity normal to S and of uniform density
over S, the equivalent surface vorticity density is zero (since grad2,Ls = 0)
so that this doublet distribution may be replaced by the concentrated edge vortex

=F ,A alone, this line vortex being of constant line density. Conversely,
it can be seen that a constant-strength line vortex along any arbitrary closed
contour produces a velocity field identical to that produced by a uniform
normal doublet distribution on any arbitrary surface having that contour as
perimeter.

It is also worth noting that a surface containing doublicity whose axis is
everywhere tangential to that surface and of density, is equivalent, by a

similar argument, to a surface source distribution of density a,- div,A
together with a line source of density , --F. where 3 denotes the local
unit normal to the perimeter of S, lying in the tangent plane to S at that
perimeter and orientated away from S.

-14-



In the special case of surface doublicity having its axis everywhere targentialto S
and unidirectional and its density v_ uniform over S, the equivalent
surface source density is zero, so that this doublet distribution may be
replaced by a concentrated edge source of variable line density oK /,a..
Advantage will be taken of this fact in section 4.2.

4.2 Velocity Induced by a Uniform Source Distribution on a Planar Polygon

Consider a planar polygon S carrying a tangential surface doublet
distributionA which is unidirectional and which has the uniform density K.
Suppose that a cartesian coordinate system (x,y,z) is defined such that the
polygon lies in z = 0 and that the x axis is parallel to the axis of the
doublicity. Thus we can write$/= KS. As indicated in section 4.1, this
doublet distribution produces the same potential and velocity field as a
concentrated line source of density (Ks.i) along the edges of the polygon.
On each straight edge of the polygon, the vector 9 is constant, so that the
equivalent line source along that edge is uniform in density.

It can be seen by comparing equations (5) and (6) that the potential induced
at any point by the doublet distribution Kt on S is the same as the negative
of the x-component of the velocity induced at that point by a source
distribution of uniform density K on S.

It follows that the x-component of the velocity induced at any point by a
uniform surface source distribution of density K on S is identical to the sum of
the potentials induced at that point by a line source along each edge of the
polygon of density -s.i (constant alng each edge). Similarly the y-component
can be obtained from the sum of the potentials due to line sources of density -KI.S.
These potentials are obtained very simply by integrating the elemental expression
given in equation (5).

The z-component of the velocity may be derived by considering the potential
due to a uniform (oublet distribution defined byA= K (i.e. doublets with
axes normal to the plane S). In this case the equivalent system consists of
a line vortex of constant density K on each edge of the polygon; the
potential at P due to this closed ring vortex may be obtained by integrating
(from infinity to the point P, with respect to z) the z-component of the
velocity induced by this vortex. This latter function is obtained by
integrating equation (7), (or alternatively from the velocity induced by a
line source of density K, using the equivalence expressed after equation (7)).

It can thus be seen that the velocity induced by a uniform surface source
distribution on a plane polygon may be obtained purely from line integrals
evaluated along the edges of that polygon; this fact is utilised in
'panel methods' which employ such source distributions. Similar arguments
may be used to simplify the integrals required in higher-order methods
employing non-uniform source distributions or non-planar panels.



4.3 Source distribution on the Surface of a Wedge

Q+

S3

S,

Consider the volume formed by rotating the rectangle ABCD through an angle oc
about the z axis which is parallel to AB and a distance r. from i;. Points
within this wedge will be defined in terms of the cylindrical polar coord-

inates (r,49,z)

Suppose that the volume contains a doublet distribution a of volume density 14/r
where p is constant, the axis of each elemental doublet being normal to the
plane containing itself and Oz (with the positive end uppermost). It can
easily be shown that both curl/i and divz are zero throughout the volume.

Using Theorem 1, the volume doublet distribution produces the same external
velocity as a surface vorticity distribution ( on the surfaces of that
volume, described by X = Tim ^n (the volume vorticity has zero density since
curla = 0). Since the doublicity is locally normal to the rectangular
faces, the value of T on those faces is zero, and we are left with vorticity
which has surface density /"1r on the remaining faces.

On the surface S. this vorticity vector points in the direction of the z axis
whereas on S, it points in the opposite direction, on S, it points radially
away from the z axis, and on S. radially towards it. In the limit as r -* 0,
the surface vorticity distribution on S, , of density './r. , distributed
over an arc length of a(1. , produces the same velocity field as a line vortex
of line density o , along the line AB which now lies on the z axis.

Using Theorem 2, on the other hand, the volume doublet distribution produces
the same external velocity as a surface source distribution c. on the surfaces
of that volume, of surface density &s = F.^n (the volume source density is
zero since div, = 0). This surface source density is zero except on the
two rectangular plane faces, on which it has the variable magnitude RA/r.
The source density is positive on the upper surface and negative on the lower
surface.

Considering the case where ABCD is of indefinite extent and r, = 0, so that
the volume corresponds to an infinite wedge of included angle oc, it can be
seen that the velocity field induced outside the wedge by a line vortex of
density r along its ridge corresponds to that induced by surface source and

-16 -



sink distributions on its two faces, of surface densityo = r /<-t ; this
density clearly approaches infinity near the ridge (i.e. as r- 0).

By adopting the results derived in section 4.1, the line vortex may be
replaced by a uniform surface distribution of normal doublets over any
indefinitely large surface which terminates at the ridge of the wedge.

These results (or modified versions of them, using line vortices which are
not of constant strength, or surfaces more complex than an infinite wedge)
are of relevance in problems where wakes, modelled by doublet sheets, arise
from wing trailing edges or from smooth surfaces (wedge angle oe= T ) which
are modelled by surface source distributions.

4.4 Modelling of Flow Past an Infinite Circular Cylinder; Jets

"U---6- " -. +l - . i . .. .

solid cylinder (a) 2-D Doublet

It is well known that the potential flow outside a solid 2-D circular
cylinder of radius a installed perpendicular to a uniform free stream U.
can be modelled by the interaction between Z. and a 2-D line doublet of
line density 211a 2 U* , the doublet axis being opposite in direction to J.

(as sketched above); U. is assumed parallelto the x axis with x = 0 at the
centre of the cylinder.

It is also easy to demonstrate that the cylinder may be replaced by a surface
source distribution of surface density r =-2U. cos e

_ -2.cos 9

(b) Surface sources

By Theorem 6 it can then be seen that this source distribution will induce the
same external velocity as a volume doublet distribution given by
#v - grad (-2U. x) = - 2U. 1, i.e. a uniform volume distribution of doublets
with the doublet axis pointing in the -x direction:

4-4- 4-0 4

4 -X

(c) volume doublicity
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This volume doublet distribution is also equivalent to either a surface
distribution of vorticity # = 2U sin a or of normal doublets of surface
density ,= -2U a cos9

+t 19

4..

(d) Surface vorticity (e) Surface normal doublets.

In this special case, the volume doublet distribution (c) is equivalent to
either any one of the surface distributions (b, d, e) or the line
distribution (a).

Similar arguments may be extended to cases in which the cylinder is not 'solid'
or 'straight' or 'circular'; such cases arise in the modelling of jets
issuing obliquely into a uniform stream. Such jets take up a curved shape
along their axis, and have a non-circular cross-section; fluid is entrained
into the jet through its boundary; the inside of the jet contains a pair of
contra-rotating vortices.

The optimum modelling of this jet is a current subject of research and will
not be considered in detail here, but it is worth noting that the equivalent
representations of Theorem 6 may allow certain of the models under development
to be considerably reduced in terms of their computational requirement.
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CONCLUSIONS

Certain theorems have been derived which state the equivalence of particular

line, surface and volume distributions of sources, doublets and vorticity.

These theorems allow the influence of singularity distributions employed, for
example in 'panel methods', to be expressed in terms of the influence of more

elementary distributions. It is possible that these results will be of some
value in the computation of compressible and/or viscous flows and in the
modelling of non-linear problems involving, for example, thick wakes or
lifting jets.
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